1. Altidis P.A., Warner B.V. Analyzing hyperelastic materials with some practical considerations. Midwest ANSYS Users Group Conference, 2005.
2. Gent A.N. On the Relation between Indentation Hardness and Young's Modulus. Rubber Chemistry and Technology. 1958;31(4):896-906.
https://doi.org/10.5254/1.3542351
3. Marckmann, G., & Verron, E. (2006). Comparison of hyperelastic models for rubber-like materials. Rubber Chemistry and Technology, 79(5), 835-858.
https://doi.org/10.5254/1.3547969
4. Yeoh, O. H. (1993). Some forms of the strain energy function for rubber. Rubber Chemistry and Technology, 66(5), 754-771.
https://doi.org/10.5254/1.3538343
5. Seibert, D. J., & Schöche, N. (2000). Direct comparison of some recent rubber elasticity models. Rubber Chemistry and Technology, 73(2), 366-384.
https://doi.org/10.5254/1.3547597
Implementation Notes: The calculator implements two empirical correlations between Shore A hardness and Mooney-Rivlin parameters for rubber-like materials. Method 1 uses the Altidis-Warner approach, while Method 2 applies the Gent formula for Young's modulus estimation. The Yeoh model (W = C₁₀(I₁-3) + C₂₀(I₁-3)² + C₃₀(I₁-3)³) provides three calculation methods optimized for different rubber types: unfilled rubbers (Marckmann & Verron), carbon black filled rubbers (Yeoh), and a conservative approach for unknown materials (Seibert & Schöche).